Comparing syndromic surveillance detection methods: EARS' versus a CUSUM-based methodology.

نویسندگان

  • Ronald D Fricker
  • Benjamin L Hegler
  • David A Dunfee
چکیده

This paper compares the performance of three detection methods, entitled C1, C2, and C3, that are implemented in the early aberration reporting system (EARS) and other syndromic surveillance systems versus the CUSUM applied to model-based prediction errors. The cumulative sum (CUSUM) performed significantly better than the EARS' methods across all of the scenarios we evaluated. These scenarios consisted of various combinations of large and small background disease incidence rates, seasonal cycles from large to small (as well as no cycle), daily effects, and various types and levels of random daily variation. This leads us to recommend replacing the C1, C2, and C3 methods in existing syndromic surveillance systems with an appropriately implemented CUSUM method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of change point analysis to daily influenza-like illness emergency department visits

BACKGROUND The utility of healthcare utilization data from US emergency departments (EDs) for rapid monitoring of changes in influenza-like illness (ILI) activity was highlighted during the recent influenza A (H1N1) pandemic. Monitoring has tended to rely on detection algorithms, such as the Early Aberration Reporting System (EARS), which are limited in their ability to detect subtle changes an...

متن کامل

Outbreak detection and evaluation of a school-based influenza-like-illness syndromic surveillance in Tianjin, China

School-based influenza-like-illness (ILI) syndromic surveillance can be an important part of influenza community surveillance by providing early warnings for outbreaks and leading to a fast response. From September 2012 to December 2014, syndromic surveillance of ILI was carried out in 4 county-level schools. The cumulative sum methods(CUSUM) was used to detect abnormal signals. A susceptible-e...

متن کامل

Disease surveillance using a hidden Markov model

BACKGROUND Routine surveillance of disease notification data can enable the early detection of localised disease outbreaks. Although hidden Markov models (HMMs) have been recognised as an appropriate method to model disease surveillance data, they have been rarely applied in public health practice. We aimed to develop and evaluate a simple flexible HMM for disease surveillance which is suitable...

متن کامل

Early Detection of Dysentery Outbreaks by Cumulative Sum Method Based on National Surveillance System Data in 1393-1396

Background and Objectives: Correct and timely detection of the outbreaks of diseases with a short incubation period is of great importance in the health system. The aim of this study was to determine the detection of dysentery outbreaks using the cumulative sum method.   Methods: This time series study was conducted using the data of the National Surveillance System between 2014 and 2017. The...

متن کامل

Applying cusum-based methods for the detection of outbreaks of Ross River virus disease in Western Australia

BACKGROUND The automated monitoring of routinely collected disease surveillance data has the potential to ensure that important changes in disease incidence are promptly recognised. However, few studies have established whether the signals produced by automated monitoring methods correspond with events considered by epidemiologists to be of public health importance. This study investigates the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 27 17  شماره 

صفحات  -

تاریخ انتشار 2008